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Abstract
Vicinal noble metal surfaces with regular arrays of steps and terraces
are very convenient model systems to test the electronic properties of
lateral nanostructures. Using angle-resolved photoemission with synchrotron
radiation we thoroughly characterize electronic states and wavefunctions in
a variety of vicinal Cu(111) and Au(111) surfaces. By tuning the terrace
width, we can observe the fundamental transition from arrays of non-interacting
nano-objects (terraces), where electron states are confined, to lateral coupling
between terraces, which leads to superlattice states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Vicinal surfaces with regular arrays of linear steps are among the simplest lateral nanostructures.
They are particularly attractive as model systems that provide excellent playgrounds for testing
the fundamental properties of electrons at one- or two-dimensional (1D or 2D) superlattices,
such as wavefunctions [1–16]. The reason is that electronic states can readily be probed at the
surface by powerful techniques, such as photoemission in reciprocal space [1–14] or scanning
tunnelling microscopy (STM) in real space [2, 15, 16]. Vicinal noble metal (111) surfaces
are particularly suitable: firstly, because they possess a free-electron-like surface state easily
identified in scanning tunnelling spectroscopy and well characterized in photoemission; and
secondly, because such surface electrons scatter strongly at step edges, giving rise to 1D or
zero-dimensional confinement and superlattice effects.

Here we study electronic states at 1D step arrays of Cu(111) and Au(111) vicinal surfaces
using angle-resolved photoemission spectroscopy (ARPES) and synchrotron radiation. Both
angular resolution and photon-energy tuning allow us to probe the three-dimensional Fourier
spectrum of electronic states, from which one can obtain a qualitative and quantitative
description of surface state bands and electron wavefunctions. The paper is organized as
follows: first we thoroughly describe the geometric structure of the noble metal vicinal
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Figure 1. Schematic front view of a vicinal surface (left). Side view of the same surface, indicating
the relevant parameters (right).

surfaces used in this work, focusing on the analysis of terrace width distributions (TWDs)
that set the limits for reciprocal space techniques such as photoemission. Then, after giving
the details of the experimental approach, we present angle-resolved, photon-energy-dependent
photoemission data for a variety of vicinal surfaces with different terrace sizes from 10 to 56 Å.
The results are analysed in the framework of the Kronig–Penney model for repulsive step
barrier potentials. A thorough explanation of the surface state evolution in vicinal surfaces is
obtained from a simplified bulk band projection picture. Finally we propose a general method
for recovering real space electron wavefunctions and potential in confined systems from the
photoemission data. The method is based on a phase-retrieval, iterative procedure similar to
that used in x-ray diffraction.

2. Geometric structure of noble metal vicinal surfaces

Vicinal surfaces are characterized by a small tilt (miscut angle) with respect to a high symmetry
(low index) plane. If the azimuthal orientation is chosen to be a high symmetry direction, the
clean vicinal surface usually displays flat terraces of the high symmetry plane separated by
straight steps. Due to the repulsive step–step interaction [17, 18], the latter generally appear
regularly spaced, as shown in the schematic description of figure 1. The most important
geometric parameters for a vicinal surface are the step array periodicity d , the terrace width
L, the step height h and the miscut angle α. The optical surface is defined as the macroscopic
average surface, i.e. the plane defining an angle α with the low index plane, and it is represented
by dashed lines in the figure. The two relevant coordinate systems in the xz plane are also
displayed: xz refers to the optical surface, whereas x ′z′ refers to the terrace plane. Both sets
of coordinates will be relevant when analysing the electronic structure.

The vicinal (111) noble metal surfaces analysed here were cut with the miscut angle
perpendicular to the [1̄10] direction and towards either the [1̄1̄2] or [112̄] direction. Cutting
in such a close-packed symmetry direction leads to straight steps by reducing kink formation.
The vicinals originating from this cut display two types of different minifacets at steps, as can
be seen in figure 2. In the [1̄1̄2] direction, the minifacets are {100}-like, while in the opposite
direction, i.e. [112̄], the steps are {111}-like. The terrace width is slightly different for {100}- or
{111}-like vicinals. Assuming periodic monatomic step arrays, terraces will contain m + 2

3

atomic rows for {100}-type steps, and m + 1
3 for {111}-type steps, where m is an integer number.

Vicinal Cu(111) (v-Cu(111)) surfaces were cut by spark erosion from a single crystal
rod. The crystal orientation was determined by standard Laue diffraction. Using home-made
tools, samples were first mechanically polished down to 0.1 µm with alumina powder, and
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Figure 2. Top (up) and side (down) view of the vicinal (111) surface. Steps running in opposite
directions display different minifacets.

then electropolished following the same procedure used for flat Cu samples [19]. The final
accuracy in the miscut was better than 0.5◦. The electropolishing step reduces considerably
the number and duration of the sputterannealing cycles (Ar+ at 500 eV, 800 K) inside
the UHV system needed to obtain clean, well-ordered step arrays. Annealing, apart from
recrystallizing the sputter-damaged surface, provides the steps with the mobility necessary to
form a thermodynamically stable homogeneous step array. A selection of STM images for
miscut angles between 5◦ and 11◦ is shown in figure 3, which corresponds to a terrace width
range between 24 and 10 Å. Regularly spaced steps align vertically and only few pinning
defects alter the step array. All step edges show so-called frizziness, which indicates that
atoms move along the step edges. From a first analysis of the STM images it can be said
that the step array becomes more regular as the miscut angle increases. This is due to the
stronger step–step interaction for shorter step–step distance. The step type also seems to affect
the quality of the step array. {111} steps display a more irregular array, which can be clearly
observed for α ∼ 5◦. For that reason we focus our analysis on vicinals with {100} steps. At
this point it should be stressed that samples with the same miscut angle but different step type
have been simultaneously prepared by mounting both samples together in the same sample
holder with a wedge system, and measured under the very same conditions of voltage, current
and scanning direction. Thus, differences in the morphology can only be related to a different
step type.

For v-Au(111) we used commercial crystals (MaTeck), with an accuracy in the miscut
angle of less than 0.2◦. We have analysed Au(23 23 21), Au(887) and Au(223), which
respectively have 2.4◦, 3.5◦ and 11.4◦ miscut angles and 56, 38 and 12 Å wide terraces. Surfaces
are also prepared by repeated cycles of sputtering with Ar+ ions at 500 eV and annealing to
800 K. In figure 4 STM images of these surfaces are shown together with their respective TWD.
The Au(111) surface is characterized by the 22 ×√

3 herring-bone reconstruction [20]. This
reconstruction consists of fcc and hcp regions of width 38 and 25 Å, respectively, separated by a
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Figure 3. STM images of v-Cu(111) surfaces: (a) α = 5◦, {100} steps (750 Å)2; (b) α = 5◦, {111}
steps (750 Å)2; (c) α = 7◦, {100} steps (350 Å)2; (d) α = 7◦ , {111} steps (300 Å)2; (e) α = 9◦,
{100}-steps (385 Å)2; (f) α = 9◦ , {111}-steps (385 Å)2; (g) α = 11◦, {100}-steps (500 Å)2;
(h) α = 11◦, {111}-steps (500 Å)2.

zigzag-shaped discomensuration line that protudes ∼0.2 Å. At v-Au(111) surfaces with small
enough terraces and {100} steps the reconstruction is suppressed, as observed for Au(223) in
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Figure 4. STM images of the v-Au(111) surfaces, and their respective TWDs: (a) Au(223);
(b) Au(887); (c) Au(23 23 21).

figure 4(a). In this case steps appear to act as rigid boundaries and do not let the surface relax in
the perpendicular direction [21]. In large terraces alternating fcc and hcp domains self-arrange
parallel to step edges. Such an alternating packing displays discomensuration lines running
parallel to the steps on {100}-type vicinals and perpendicular to {111}-type vicinals [21]. The
latter is the case of Au(23 23 21) and Au(887),shown in figures 4(b) and (c). The reconstruction
lines perpendicular to the steps are better observed in the insets of figures 4(b) and (c). The
resulting corrugation along the terraces is about 0.2 Å, similar to the one found on flat Au(111).
The periodicity of the reconstruction is 72 Å, slightly larger than that of Au(111) (63 Å).

The STM images in figure 4 show more regular step arrays for v-Au(111) compared with
v-Cu(111), and also a relatively lower frizziness. The herring-bone reconstruction, which
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Table 1. Structural parameter list for the vicinal Cu(111) and Au(111) surfaces. The values are
obtained from STM image analysis. m stands for the number of atom rows per terrace. Nominal
values for the Miller indices are indicated in parentheses. The terrace width deviation in the case
of Cu(556), Cu(779) and Cu(223) is estimated from the miscut error, which is ±0.5◦ .

Vicinal index Step type m α(deg) L (Å) σ̄

Cu(556) {100} 10 2
3 5.1 (5.1) 23.6 (23.3) —

Cu(779) {100} 7 2
3 7.3 (7.0) 16.3 (16.9) —

Cu(557) {100} 5 2
3 8.8 (9.4) 13.2 ± 2.5 (12.6) 0.185

Cu(223) {100} 4 2
3 11.8 (11.4) 10.2 (10.3) —

Au(23 23 21) {111} 22 1
3 2.39 (2.42) 56.5 ± 6 (55.8) 0.11

Au(887) {111} 15 1
3 3.54 (3.52) 38.9 ± 4 (38.3) 0.10

Au(223) {100} 4 2
3 10.45 (11.44) 12.8 ± 2 (11.7) 0.15

induces the faceting transition in v-Au(111) with miscut angles between ∼4◦ and ∼10◦ [21],
appears to be the reason for the homogeneity and the higher stability of the v-Au(111) surfaces
in figure 4. A more quantitative analysis of the step array regularity can be done by analysing
the TWD σ shown in the right panels of figure 4. The values of σ obtained for all v-Au(111) and
v-Cu(111) surfaces are included in table 1, where we also summarize the different parameters
obtained from the STM image analysis. For v-Cu(111) the TWD was measured only for the
9◦ vicinal. Measurements performed by other authors with different v-Cu(111) surfaces give
a value for σ between 0.2 and 0.3 [22]. Comparing the standard deviations of v-Au(111) and
v-Cu(111), it can be concluded that the TWD in v-Au(111) is sharper than that in v-Cu(111)
by a factor of 1.5–2.

3. Surface states at vicinal surfaces

3.1. Flat noble metal surfaces

As depicted in figure 5, surface states can be viewed as electrons confined within the surface
plane due to the presence of the crystal band gap on one side and the vacuum barrier on the
other. Strictly speaking, surface states originate at energy gaps of the bulk band structure
projected on the surface. In (111) noble metal surfaces the projection of the s, p-bands near the
Fermi level leaves a gap at the centre of the surface Brillouin zone (SBZ), as shown in figure 6.
The top panel displays a cut of the bulk Fermi surface (FS) in the direction perpendicular to
the surface, with the s, p-band gap arising from the L-neck projection at �̄, i.e. at the centre of
the SBZ. In the bottom panel of figure 6 we show the 2D bulk band projection over the whole
SBZ. The FS of the surface state appears as a black ring centred in the gap, as expected for a
2D state with isotropic and parabolic dispersion. The surface band dispersion E(k‖) can be
directly obtained by ARPES experiments. In particular for (111) noble metal surfaces, it has
been extensively studied in the past [23–32], displaying free-electron-like isotropic behaviour
parallel to the surface and around �̄:

E(k‖) = E0 +
h̄2

2m∗ k2
‖ (1)

where E0 is the energy at the band bottom and m∗ the effective mass. E0 is given by the
reflecting conditions of the surface–interface barriers in the perpendicular direction, whereas
the effective mass m∗ is related to the strength of the potential variation in the surface plane.
The most accurate experimental energy dispersions (EDCs) for the three noble metals Cu,
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Figure 5. Potential and wavefunctions for the surface (n = 0) and image states (n = 1) in Cu(111).
Surface electrons are trapped between the vacuum barrier (image potential) and the crystal gap.

Table 2. Parameters of the surface state dispersion on (111) noble metal surfaces. The energy at
the band bottom, measured at T = 30 K, is taken from [33].

E0 − EF (eV) m∗/me kF (Å−1)

Cu −0.435 (−0.391a) 0.412 0.215
Au −0.487 (−0.440b) 0.255 0.167/0.192
Ag −0.063 (−0.026b) 0.397 0.080

a RT values taken from [10].
b RT values taken from [35].

Au and Ag have been recently obtained by Reinert et al [33], and are displayed in figure 7.
The parameters defining the dispersion are listed in table 2. As can be seen in the figure, the
surface state at Au(111) is split due to the spin–orbit coupling (SOC) [31, 33]. The 2D FS
of the surface state is obtained by mapping photoemission intensity distribution curves as a
function of the momentum parallel to the surface, as shown in figure 7. The FS for Cu(111),
Au(111) and Ag(111) is centred at �̄ and its circular shape is an indication of the isotropic
dispersion of the surface state. The radius depends on both the band bottom and the effective
mass. In Au(111) the SOC splits the FS in two concentric rings. The spin of each ring is
azimuthal, rotating in opposite directions. The broader FS in Ag(111) has also been attributed
to a smaller, unresolved SOC splitting [34].

3.2. Vicinal noble metal surfaces

As frequently observed in STM, the s, p-like surface state of (111) noble metal surfaces is
very sensitive to adsorbates (adatoms), vacancies and surface steps, where surface electrons
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Figure 6. (a) Vertical cut in the (kx , kz) plane, showing the projected bulk bands at the Fermi
energy. A gap is formed at the centre of the SBZ. (b) A 2D view of the SBZ with the circular gap
centred at �̄. The Fermi surface of the surface states appears as a ring centred in the gap.

scatter strongly [15, 16, 36–39]. Thus a regular array of surface scatterers, like the 1D
step array of the vicinal surface, is expected to modify the surface band dispersion deeply,
leading to electron confinement and superlattice effects. The latter can be appropriately
measured by angle-resolved photoemission, which also provides an interesting insight into
wavefunctions [6, 8, 12–14].

In the following we present a thorough description of surface states at noble metal vicinal
surfaces using the variety of crystals described above. The photoemission experiments were
performed with tunable synchrotron radiation at LURE (Paris), HASYLAB (Hamburg) and
SRC (Wisconsin) facilities. Experiments on v-Cu(111), Au(223) and Au(887) were done
at 300 K using p-polarized light at LURE and HASYLAB, where the experimental stations
are equipped with conventional angle-resolved photoemission setups that provide angular
resolution around 0.5◦ and total energy resolution of 50 meV. The measuring geometry for
the dispersion perpendicular to the steps is sketched in figure 8. The emission plane contains
both the incident light and the photoelectron, and the emission angle is selected by turning the
analyser. At SRC we analysed the case of Au(23 23 21) at 120 K, using a Scienta SES200
spectrometer with an angular resolution of 0.3◦, total energy resolution of 10 meV and also
p-polarized light. The Scienta angle is set perpendicular to the step array. In this case the
experimental setup was such that the incident light was perpendicular to the emission plane.

In figure 9 we show the photoemission spectra for Au(23 23 21) and Cu(11 11 9) with
varying emission angle in the direction parallel to the steps. The spectra are dominated by
the intense surface state peak near the Fermi level. In Au(23 23 21) the peak splits at higher
emission angles due to the SOC (tick marks in the figure), in the same way as observed in
flat Au(111) [31, 34]. For a quantitative analysis of the band dispersion we obtain electron



Electronic states at vicinal surfaces S3289

Figure 7. Surface bands (top) and FS (bottom) of (a) Cu(111), (b) Au(111) and (c) Ag(111). The
shaded areas in the top panels correspond to the bulk band projections. The circular shape of the
FS reflects the isotropic dispersion parallel to the surface. In the case of Au(111), the surface state
band splits due to the SOC, which leads to two concentric rings in the FS (adapted from [33]).

x

y
z

hν

α

(h,h,l) E

A

kin, θ 

θ

Figure 8. Measurement geometry in angle-resolved photoemission for surface band dispersion
perpendicular to the steps. The shaded area represents the emission plane that contains both
photons and electrons. In the case of Au(23 23 21) the experimental setup was such that the
incident light was perpendicular to the emission plane.

energies from the peak maxima and parallel wavevectors from the emission angle θ and the
measured electron kinetic energy Ekin by using the known formula [40]

kx,y =
√

2m Ekin

h̄2 sin θ. (2)
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Figure 9. Dispersion of the surface state in the direction parallel to the steps at (a) Au(23 23 21)
and (b) Cu(11 11 9). The parabolic dispersion indicates the free-electron-like behaviour along
the terraces. The ticks in the left figure indicate the SOC splitting, similar to that observed in flat
Au(111).

The data obtained from the spectra in figure 9 can be fitted to free-electron-like parabolas
with effective mass of m∗ = 0.254 me for Au(23 23 21) and m∗ = 0.46 me, very similar to
the latest photoemission results on Au(111) and Cu(111) [34, 35]. In both cases the minimum
of the parabola is at ky = 0, as observed for flat crystals. In order to extract the spin–orbit
splitting in Au(23 23 21) it is possible to refine the analysis of the spectra including a line
fit with a double peak. This leads to two parabolic bands, with the same ky-dependent split
found in flat surfaces [13]. Thus the same dispersion and SOC splitting of the flat surface are
found in the stepped one along the parallel direction, and hence we conclude that parallel to
the terraces the electronic structure remains unaltered by the step array.

By contrast, the surface electronic structure is strongly modified in the direction
perpendicular to the steps. In figure 10 we show the EDC curves in the direction perpendicular
to the steps for the three Au vicinals. The emission angle is taken relative to the optical or
average surface (see figure 8). The photoemission spectra were obtained at a photon energy
hν = 27 eV for Au(223) and Au(887) and at hν = 60 eV for Au(23 23 21). A remarkable
difference is observed between Au(223), i.e. the surface with 12 Å wide terraces, and Au(887)
and Au(23 23 21), with 39 and 56 Å wide terraces respectively. A broad, 2D dispersing feature
is observed in Au(223), whereas the surface state splits into sharp non-dispersing peaks in
Au(887) and Au(23 23 21) (indicated by dashed lines). The intensity of the latter is modulated
along the emission angle and the number of split peaks depends on the terrace width: two
peaks are observed in Au(887), which has the narrowest terraces, and three in Au(23 23 21).
A colour plot of each EDC spectra series is shown below, where the horizontal axis stands
for the emission angle and the vertical axis for the energy. Both the energy and the angular
dependence of the photoemission intensity of the non-dispersing peaks are directly observed
in such colour plots. In Au(223) we observe a double parabolic dispersion, away from normal
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Figure 10. Series of EDC curves in the direction perpendicular to the steps for (a) Au(223), (b)
Au(887) and (c) Au(23 23 21). In Au(223) the surface state is a duplicated broad 2D dispersing
feature while in the other two vicinals the surface state splits into sharp 1D non-dispersing peaks
(dashed lines). The figures at the bottom are colour-scale plots of the same series. For (b) and (c)
the second energy derivative of the EDC spectra is used to enhance the peak features.

emission and shifted up in energy with respect to flat Au(111). In order to enhance the different
features, in the case of Au(887) and Au(23 23 21) we have plotted the second energy derivative
of the spectra. The latter is proportional to the peak intensity for constant peak width [41].

In Cu(111) vicinals, the surface state displays parabolic dispersion for all terrace widths.
Figure 11 shows the angle-resolved measurements in the direction perpendicular to the steps
for Cu(223), Cu(557) and Cu(556), with 10, 13 and 24 Å wide terraces, respectively. As in the
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Figure 11. Surface band dispersion perpendicular to the surface for (a) Cu(223), (b) Cu(557) and
(c) Cu(556). A parabolic dispersion can be observed in the three cases, where the energy as well
as the momentum of the band centre are shifted with respect to Au(111). For Cu(223) the parabola
is duplicated.
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Figure 12. E(kx ) surface bands. (a) In Au(223) the surface state forms superlattice bands, zone
folded by the superlattice vector g = 2π/d. (b) In Au(887) two 1D quantum well (QW) levels are
observed. The size of the dots is proportional to the corresponding peak intensity in figure 10. The
energy gap between QW levels in Au(887) is consistent with confinement within terraces.

case of Au(223), the peaks appear broadened compared with those observed on the flat surface.
The band bottom is also shifted in energy and emission angle with respect to the flat surface.
In the case of Cu(223) the parabola is also duplicated, similar to Au(223). The absence of
a double band in Cu(557) and Cu(556) is simply due to the low photon energy used in both
cases. As we show later, the particular Fourier spectrum of the surface state at vicinal surfaces
limits the observation of duplicated bands only within a narrow photon energy range.

For a quantitative analysis, in the case of v-Cu(111) and Au(223) we obtain the surface
band dispersion from the peak maxima in the EDC spectra. For Au(887) and Au(23 23 21), due
to the overlap of the different features, it is convenient to perform a line fitting to individual
spectra. Following the standard procedure, we used Lorentzian peaks, Shirley and smooth
backgrounds, and Gaussian convolution to account for the experimental resolution. These
allow a clear identification of the different non-dispersing levels, as well as the peak intensity
for further analysis (see below). As an example we show the resulting dispersion relations
for the case of Au(223) and Au(887) in figure 12. kx is assumed to be positive in the step-up
direction. The slight upward energy shift of the second parabola is only an artefact related to
its relatively weak intensity at this particular photon energy. The energy shift disappears at
photon energies where both parabolas show similar intensities (not shown here).We can locate



Electronic states at vicinal surfaces S3293

d b

ψtψr

ψi

U
0

Figure 13. Kronig–Penney potential mimicking the potential array formed by the step superlattice.

the two parabolas in momentum space at kx = 0.23 ± 0.04 and 0.74 ± 0.04 Å−1. The distance
between the two parabolas is �kx = 0.51 Å−1. This value is close to the reciprocal vector
g = 2π/d = 0.49 Å−1, suggesting band folding by the step superlattice. Zone-folding effects
can only take place in the presence of a finite periodic potential that allows coupling from
terrace to terrace. The upward energy shift relative to the case of a flat surface indicates the
repulsive nature of the step barrier. In contrast, for Au(887) we clearly observe two flat levels
at −0.40 and −0.11 eV, rather indicating strong confinement along the kx direction.

3.3. Analysis within the Kronig–Penney model

The overall changes in the surface electronic structure induced by the step array can be properly
analysed within the framework of the 1D Kronig–Penney (KP) model [2, 10]. The step lattice
can be viewed as a periodic array of potential barriers, as described in figure 13. Little is
known about the shape of the step potential but, according to calculations done within the
jellium model [42], it seems to be located over a range of a few angstroms on either side of the
step. Nevertheless, the barrier can be simplified by choosing a δ-Dirac barrier U0bδ(x), hence
disregarding the shape and width of the step potential. Indeed, it has been shown that one can
always replace a potential barrier by a suitably chosen δ function [43], although the strength
U0b depends on the energy. Since the energy range we are interested in is small, taking U0 as
a constant should be a good approximation [44]. As for any other periodic potential, the KP
model gives bands and forbidden gaps as solutions of the energy dispersion. For a potential
consisting of a periodic array of δ functions, i.e. V (x) = ∑

n U0b δ(x − nd), the dispersion
relation takes the following form:

E(kx) = E0 +
h̄2

2m∗
1

d2
[cos−1(|T | cos kxd) − φ]2 (3)

where E0 is the energy at the band bottom when d → ∞, i.e. for a terrace of infinite width.
|T | is the modulus of the transmission coefficient and φ the phase. Both can be expressed as

|T |2 = 1

1 + (q0/q)2
(4)

and

φ = − tan−1(q0/q) (5)

where q0 = (m∗/h̄2) · U0b and q =
√

(2m∗/h̄2)(E − E0). Note that for an infinite barrier,
i.e. U0b = ∞, |T | = 0 and φ = −π/2, which corresponds to a phase shift in the wavefunction
of ±π . Then we recover the expression of the energy for an infinite well:

EN = E0 +
h̄2

2m∗
π2

d2
N2 for N = 1, 2, 3 . . . . (6)
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Figure 14. KP bands for increasing potential barrier. (a) U0b = 0, free-electron parabola. (b) Finite
potential barrier. The band splits into superlattice subbands which are zone folded by the reciprocal
superlattice vector gn = 2π/d. (c) Infinite potential barrier. The subbands become flat levels. The
levels are centred at k = π/d · N (except N = 1, see text) where N stands for the N th energy
level. The free-electron parabola is plotted in (b) and (c) in red.
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Figure 15. Energy shift as a function of 1/d2 for different Cu and Au vicinals. The solid curve
is obtained by inserting the linear fits of |T | and φ of figure 16 in equation (7). The dashed line
represents the energy shift for the case of an infinite barrier.

On the other hand, for U0b = 0, |T | = 1 and φ = 0, and equation (3) reduces to the
free-electron-like band described in equation (1).

The energy dispersions for these three different cases are displayed in figure 14. The free-
electron parabola splits into superlattice subbands in the presence of a finite potential, which
are zone folded by the superlattice vectors gn = 2π/d · n. As we increase the potential barrier
the gaps become wider and the subbands flatter. In the limiting case of an infinite barrier,
the bands become flat energy levels. The momentum distribution of the N th energy level is
centred at kx = π/d · N in analogy to the 2D QW energy levels of thin films [45], except the
N = 1 level. In the latter the QW only contains a half-wavelength of the sine function, which
is not enough to centre the Fourier transform at its period kx = π/d . The resulting Fourier
distribution is centred at kx = 0.
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For dispersing surface states in v-Cu(111) and Au(223), we can obtain the transmission
probability and the barrier strength by fitting the experimental energy shift �E at the centre
of the band using equation (3), which takes the following form for kx = 0:

�E(d) = E(0) − E0 = h̄2

2m∗
1

d2

[
cos−1

(
1√

1 + (q0/q(�E))2

)
+ tan−1(q0/q(�E))

]2

. (7)

q0 is obtained from this fit and hence the potential barrier U0b, the transmission probability
|T |2 and the phase φ. In figure 15 data points represent the experimental values of the energy
shift �E(d) of the surface state band at v-Cu(111) and v-Au(111) plotted as a function of
1/d2. We also include results for Cu vicinals reported in the literature. The deviation of the
experimental values from the case of the infinite barrier (dashed line) is clear from this plot.
The corresponding values of |T |2, φ and U0b are shown in figure 16. The data are fitted
with straight lines, which in turn are used to obtain the analytical (empirical) expression for
�E(d) shown in figure 15 as a solid curve. The transmission probability in figure 16 increases
with decreasing terrace width and it is considerably high for all cases, lying between 0.6 and
0.8. The phase is also far from that corresponding to total confinement, i.e. ±π , as could
be deduced from the transmission. Finally, the potential barrier also increases for decreasing
terrace width, going from 1 up to 1.5 eV Å. Changes in the elastic stress at steps as a function
of terrace width or the interaction between line dipoles of neighbouring steps could in fact
slightly modify the potential barrier. Also the overlap of surface and bulk states is expected
to change due to different bulk band projections on each vicinal surface, thereby affecting the
effective potential barrier at the step. This point is discussed later, since it appears to be the
reason for the transition from non-dispersing, confined states at wide terraces to superlattice
dispersing bands at vicinal surfaces with narrow terraces.

The peak fitting for Au(887) and Au(23 23 21) leads to the energy levels listed in table 3
together with the standard deviation. The proximity to the Fermi level did not allow the
calculation of the standard deviation for the N = 3 level at Au(23 23 21). The standard
deviation found for all non-dispersing energy levels falls below 50 meV. Therefore, there is a
strong electron confinement and consequently negligible transmission or coupling across the
step barriers. The energy levels lie lower and the gap between them is smaller for Au(23 23 21),
where the terrace width is higher. The results are generally consistent with confinement in
a 1D QW of size L, where L is the terrace width3. Furthermore, as shown in figure 17, all
quantum levels in Au(23 23 21) and Au(887) fit nicely to those of the infinite QW, given by

EN = E0 +
h̄2

2m∗

(
π

L
· N

)2

. (8)

In figure 17 the straight fit to data points for both Au(23 23 21) and Au(887) assumes the
same effective mass m∗ = 0.255 me of the flat surface and uses a unique reference energy E0

as the fitting parameter. The deviation between the experimental energy levels and the infinite
QW in Au(23 23 21) is below 30 meV and the average is 16 meV, indicating a very good
agreement. We obtain E0 = −0.48 eV, which lies within the range of the reported values for
the band bottom of the surface state on Au(111) [31, 33, 35, 46].

The photoemission intensity from the QW spectra in figure 10 appears broadened in
the emission angle (kx) and the energy scale. Both result in the intensity modulation that
tends to track the free-electron-like parabola. Wavevector broadening is naturally explained
by terrace confinement in real space. Furthermore, a refined analysis of the kx-dependent

3 For the small miscut angles used in this work L and d differ by less than 0.02%. In any case, L rather than d should
be considered as the terrace confinement length.
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function of terrace width. The transmission probability and the phase are calculated for the band
bottom. The data are fitted with a linear function (solid line).

intensity is used to obtain the electron wavefunction in the QW, as we show later. The energy
broadening, which is quantified in table 3 by the standard deviation of the different energy
levels, can be due either to the existence of a slight band dispersion or to TWD effects.
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Figure 17. Fit of the QW levels in Au(887) and Au(23 23 21) with the infinite QW model. Both
sets of data points are simultaneously fitted with the same E0 = −0.480 eV.

Table 3. Energy levels obtained in the fit of the EDC spectra for Au(887) and Au(23 23 21). The
values in parentheses are the energy levels obtained from the infinite QW model with reference
energy E0 = −0.480 eV. The standard deviations �E of the fitting are also listed. �E3 for
Au(23 23 21) has not been calculated, since the proximity of the Fermi level did not allow a proper
measurement.

Vicinal E1 (eV) E2 (eV) E2 (eV) �E1 (eV) �E2 (eV) �E3 (eV)

Au(887) −0.400 (−0.380) −0.110 (−0.81) — 0.015 0.038 —
Au(23 23 21) −0.427 (−0.432) −0.274 (−0.287) −0.060 (−0.45) 0.027 0.041 —

First we consider such standard deviation as due to the residual dispersion of the superlattice
subbands with multiple zone foldings along kx , i.e. the mini-bandwidth. Using the KP model
we estimate the maximum transmission through the steps in Au(23 23 21) and Au(887). At
the N = 1 level, which corresponds to the band bottom in a superlattice state, the resulting
maximum transmission probabilities are |T |2max = 0.008 and |T |2max = 0.026 for Au(887) and
Au(23 23 21) respectively. At E = −0.100 eV, i.e. near the highest observable energy level
below EF for both surfaces, the transmission probability is |T |2max = 0.035 and |T |2max = 0.18
for Au(23 23 21). Within the simple KP model, such transmission probabilities lead to step
potential barriers U0b of 25 and 10 eV Å, respectively. Thus, assuming a small subband
dispersion, we obtain a very high step barrier potential that has no physical meaning. This
suggests that the analysis based on the simple KP model is limited. So far we have neglected
inelastic scattering (absorption) at steps, i.e. complex step barrier potentials. As a matter of fact,
a smaller real potential with a large imaginary part due to strong absorption could display the
same energy levels of the infinite QW. Indeed, significant absorption by surface–bulk mixing
is theoretically predicted and experimentally observed with STM in the lateral confinement of
surface states by steps, adsorbate rows or adatom corrals [15, 16, 36–39, 47–49]. No observable
differences between the energy levels obtained in these works and that of the infinite QW are
found, which is ascribed to the lack of transmission (the slight energy differences observed
in [49] are below our experimental resolution).
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Figure 18. Bulk band projection at E = EF onto vicinal surfaces with small and high miscut
angles in the xz plane. Dark-grey zones are the regions where bands are projected from both sides
of the BZ, whereas light-grey zones present projection only from half a side. For 3.5◦ , the �̄ gap
that supports the L-neck surface state is still present. For 11◦ miscut there are bulk states projected
over the entire SBZ and only surface resonances can exist.

On the other hand, the energy broadening of the QW levels due to a finite TWD can be
estimated as

�E = h̄2

2m∗
2π

L3
�L N2 (9)

where �L is the TWD. Using the STM values of table 1, we obtain values of �E1 = 25 and
�E2 = 100 meV for Au(887) and �E1 = 10 meV, �E2 = 40 meV and �E3 = 90 meV for
Au(23 23 21). These are similar to the standard deviations shown in table 3, and suggest that
TWD is rather the dominating source of energy broadening of the QW levels in figure 10.

4. 1D versus 2D surface states

One general conclusion from the KP analysis is that the 1D or 2D nature of the s, p-like surface
state at vicinal surfaces with large or small surfaces, respectively, can only be explained by
assuming a considerable change in the effective step potential that the electron feels as a
function of the miscut angle. The large step barriers found for Au(23 23 21) and Au(887)
are not compatible with the small quantum size shifts found for the rest of the surfaces. As
mentioned above, we expect the step potential to become smoother at narrow terraces due to
the overlap of the line dipoles of neighbouring steps [42]. However, the step potential extends
approximately ±2 Å around the steps, and hence significant smoothing is expected only at
terraces with one to two atomic rows.

On the other hand, by changing the miscut angle the band structure projection of the
flat surface shown in figure 5 does not hold. The surface plane rotates and hence the band
projection along the SBZ. This is schematically depicted for different miscuts in figure 18. In
this figure, the surface plane is represented by the thick black line that rotates with the miscut
angle. Along this plane, regions of the SBZ where bulk bands are projected from both sides of
the BZ are marked in dark grey, whereas regions with projection only from half of the BZ are
marked in light grey. The L-point projection marks the edge of the SBZ at ±π/d . Our interest
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Figure 19. Fit of the EDC curves for (a) Au(887) and (b) Au(223). (c) The resulting Lorentzian
at the band bottom for Au(223) and Au(111) and at the N = 1 maximum for Au(887).

is focused on the projected gap that supports the surface state. For the 3.5◦ miscut, the gap is
narrower than in flat Au(111) but still exists in the centre of the SBZ. By increasing the miscut
angle the �̄ gap shrinks and eventually vanishes. As shown in the figure, for Au(223) with 11◦
miscut there are bulk states projected over the whole SBZ and no �̄ gap. The critical miscut
for closing the gap is easily obtained as αc = tan−1(kneck/kL), where kneck is the radius of the
neck and kL is the distance �L. For Cu, kneck = 0.19 and 0.26 Å−1 for the band bottom and
EF respectively, and for Au kneck = 0.18 and 0.24 Å−1. These values lead to closing angle
ranges of αc ∼ 7.2◦–9.8◦ for Cu and αc ∼ 7.7◦–10.2◦ for Au.

Strictly speaking, surface states can only exist in the presence of a gap; thus the peaks
observed for miscut angles bigger than αc will be surface resonances. The increasing overlap
with bulk states manifests itself in the surface state peak width. In figures 19(a) and (b) we
show the spectra at the surface band minimum in Au(223) and the N = 1 level for Au(887).
For the latter we have chosen the spectrum with maximum intensity, i.e. at the centre of
the angular distribution. By applying the fitting procedure explained above we obtained the
Lorentzian surface peaks shown in figure 19(c) for both Au(223) and Au(887). In this figure
we also include as a reference the corresponding Lorentzian peak for flat Au(111), assuming a
width of w111 = 94 meV that results from the convolution of the 50 meV Lorentzian lifetime
broadening [50] plus the 80 meV experimental Gaussian width. The N = 1 level for Au(887)
has w887 = 165 meV, which is about twice the width of the surface state on flat Au(111),
whereas for Au(223) we obtain w223 = 490 meV, i.e. three times bigger than in Au(887).
After subtracting the TWD contribution (15 meV for Au(887) and 100 meV for Au(223)), as
well as the experimental resolution, we obtain a lifetime broadening of 143 meV in Au(887)
and 330 meV in Au(223). The difference can be explained, within the band projection picture
of figure 18, as due to the absence of a projected band gap in Au(223), which permits only
surface resonances in this case.

Since resonances are coupled to bulk states they are less confined to the surface than real
surface states. Thus surface resonances are effectively found deeper in the bulk, and hence
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less affected by the step potential. The latter becomes smoother as we enter the bulk, as
shown in figure 20(a). There we show the electrostatic potential induced by the dipole-like
charge-density formation at the step edge, as calculated by Wang et al [5]. In the direction
perpendicular to the surface, the potential barrier diminishes rapidly, decreasing to ∼50%
for 2 Å inside the bulk. Figure 20(a) indicates that the effective step potential barrier will
dramatically depend on the localization of the electron in the direction perpendicular to the
surface. As shown in figure 20(b), the effective potential barrier can be estimated from
the overlap between the electron probability density and the step potential in the direction
perpendicular to the surface:

Veff(x0) =
∫

V (x0, z)|ϕ(z)|2 dz (10)

where x0 can be chosen to be the step edge. For numerical estimations we can assume a
2 Å wide Gaussian step barrier V (x0, z) along the z direction, and an exponentially damped
Bloch wavefunction for the surface resonance, with decay length λ. The reduction in the
effective step potential is already quite strong for rather small decay lengths. In figure 20(b)
we show two different examples. The penetration of a real surface state on Au(111) is around
2.5 ML, whereas larger penetrations between 9 and 20 ML are typical for resonances [58] or
surface states near gap edges [51]. Compared with the potential value V (x0, 0) at the step,
the effective potential Veff(x0) reduces to 0.5 · V (x0, 0) for λ = 2.5 ML, to 0.2 · V (x0, 0) for
λ = 9 ML, and to 0.1 · V (x0, 0) for λ = 20 ML. Thus, a decrease in the effective potential
by a factor of 2.5–5 seems reasonable in the transition from 1D QW states to 2D superlattice
states.

Although our result is independent of the shape and value of the step potential V (x, z),
little is known about it. Full atomistic scattering calculations of different adsorbates on Cu(111)
show strong similarities between their scattering properties [49], which in our case would be
represented by the complex step potential. Similar scattering properties are also found for
different confining elements analysed by other authors [15, 16, 36–39, 47, 48]. Thus, the
common transition miscut angle observed for v-Cu and v-Au could be explained by both the
similar bulk band projection and step potentials in these surfaces.

5. Terrace versus average-surface character

Due to total confinement, 1D QW states can be defined as terrace-like states, since they do not
‘see’ the average, stepped surface. By contrast, 2D surface states propagate across the surface
plane, which differs from the terrace by the miscut angle. Thus one can define a distinct terrace
or average-surface character or modulation plane for the surface state wavefunction. Such
character can be probed in photon-energy-dependentphotoemission experiments. The data for
Au(223) and Au(23 23 21) are shown in figures 21(a) and (b). Both surfaces display duplicated
spectra that change their relative intensity as we tune the photon energy. The situation resembles
that of electron diffraction from a stepped surface, shown in figure 21(c), where the split spots
are only observed in anti-phase interference conditions [52]. Furthermore, the spectra in
figure 21(c) correspond to the (00) spot at normal incidence, and hence the energies for singlet
(in-phase) or doublet (anti-phase) conditions are respectively comparable with the energies at
which single or double spectra are observed in photoemission in figures 21(a) and (b).

Based on this resemblance, we analyse the photoemission data of figure 21 using the
wavevector plot of figure 22, which is similar to that used in spot profile analysis in LEED
(SPALEED). The data points in figure 22 represent the (kx, kz) momentum calculated at the
band bottom for Au(223) and at the centre of the N = 1 broad spot of Au(23 23 21) shown
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Figure 20. (a) Step potential as a function of the distance above and below the step (adapted
from [5]). (b) z dependence of the step potential V (x0, z), where x0 is the position of the step,
and probability densities for two different decay lengths of surface states. The lower degree of
localization of the surface resonance in the surface (bottom) leads to a lower effective potential.

in figure 10(c). kz is calculated assuming the simplest approach for the photoemission final
state [40], i.e. a free-electron-like band in an inner potential V0 = 15.21 eV:

kz =
√

h̄2

2m
(Ekin + V0) − k2

x . (11)

Figure 22 actually reflects the complete Fourier spectrum (kx, ky = 0, kz) of the surface
state, which is probed by scanning the emission angle (kx, ky) and the photon energy (kz).
The weight of the different Fourier components is proportional to the normalized intensity of
the photoemission peak, represented in figure 22(a) by the size of the dots. The shaded cigar
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Figure 21. Spectra series for varying photon energy for (a) Au(223) and (b) Au(23 23 21). In both
cases the spectra are duplicated and the relative intensity modulated in photon energy. (c) LEED
calculation of a vicinal Au(111) surface for the (00) spot at normal incidence and back scattering,
showing the spot splitting due to the step array.

shapes in such a figure qualitatively describe the continuous Fourier distribution of the surface
state. For Au(223) this is oriented perpendicular to the surface, as expected for 2D surface
states confined in the average-surface plane. As also expected for L-neck derived surface
states the maximum intensity is found near the L-point of the bulk band structure, which is
theoretically accessed at the points indicated in the figure [53]. The intensity modulation of
the spectra for varying photon energy can be followed with the constant energy lines shown as
dotted curves. From the Fourier map one can obtain the qualitative picture of the real-space
wavefunction shown in the bottom panel. Along the x direction, it is composed of Bloch waves
with the periodicity of the superlattice. Along the z direction, it is an evanescent oscillation
with kz = kL, consistent with the kz-broadening away from the L-point.

In contrast to the case of Au(223), the two sets of data points in figure 22(b) for Au(23
23 21) line up parallel to the [111] axis. This corresponds to the decay direction of QW
wavefunctions confined in terraces, as depicted in the bottom panel. In this case the reference
plane (or modulation plane) is the (111) terrace. On the other hand, data points for Au(23 23 21)
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Figure 22. Diffraction plots (top) and corresponding wavefunctions (bottom) for (a) Au(223),
measured at the band bottom, and (b) Au(23 23 21), measured at the centre of the N = 1 level.
In (a) the size of the dots is proportional to the peak intensity, thereby reflecting the weighted
Fourier spectrum of the surface state represented by the cigar-shaped rods (see text). The latter is
broadened perpendicular to the surface, as expected for the average-surface modulated states in this
case (bottom). (b) The data points for QW states in Au(23 23 21) align along the [111] direction,
indicating wavefunction decay perpendicular to the terraces (bottom). Split lines in Au(23 23 21)
are due to final state diffraction.

also display umklapp by step superlattice vectors. In this case, the confinement of the surface
state on a single terrace discards any effect of the step array on the surface state. However, the
photoemission final state is delocalized and this can undergo scattering by superlattice vectors,
in the same way as LEED electrons (figure 21(c)).

6. Transition from terrace to average-surface modulation

Due to the herring-bone reconstruction, Au(111) vicinal surfaces with miscut angles between
∼4◦ and ∼10◦ undergo faceting. Thus, one cannot analyse diffraction plots at intermediate
miscut angles, i.e. those between the 1D QW and the 2D step superlattice state regimes. For
this purpose we perform photon-energy-dependent measurements from v-Cu(111) surfaces
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Figure 23. Diffraction plots for v-Cu α = 9◦ (left), 7◦ (centre) and 5◦ (right). The corresponding
wavefunctions are plotted below.

with sharp arrays of {100}-like steps (see table 1). In figure 23 we show the diffraction plots
for 5◦, 7◦ and 9◦ miscuts in the top panels and the corresponding real-space wavefunction
at the bottom. In all cases, the surface state displays parabolic dispersion in the direction
perpendicular to the steps, discarding the presence of complete confinement within terraces,
as in 1D QW states. However, a transition is observed in the alignment of the data in figure 23.
For the vicinal surface with narrowest terrace width (9◦, L ∼ 13 Å) data points line up
vertically, indicating average-surface modulation of the surface state. In the case of 5◦ miscut
(L ∼ 24 Å), in spite of the 2D character of the surface state, this is modulated on the terrace,
since data points line up along the [111] direction in the diffraction plot, like the 1D QWs in
figure 22(b). The shift from terrace to average-surface-like wavefunction seems to be smooth,
as indicated by the data points lying between the direction perpendicular to the average surface
and the [111] axis in the intermediate case of 7◦ miscut (L ∼ 17 Å). Thus the transition in
the modulation plane of the wavefunction occurs at ∼ 7◦, which is also the critical angle for
�̄ gap closing, as stated in the previous section.

The overall evolution of both the dimensional character (1D versus 2D) and the
wavefunction type (terrace versus average-surface) of surface states at vicinal (111) noble
metal surfaces can be understood within the bulk band projection picture outlined in figure 18.
In figure 24 we examine the band projection also at the intermediate miscut angles of figure 23.
Now we include the Fourier spectrum of the surface state determined in the diffraction plots of
figures 21 and 22, which display an increasing overlap with bulk states as the gap closes. At
small miscuts, the whole Fourier distribution of the surface state (the L� line) lies within the
gap. As we concluded earlier, this is the reason for having a strong step potential, and hence
complete confinement within terraces of 1D QW states. With 5◦ miscut the terrace modulation
leads to full k‖ broadening in the SBZ, such that the Fourier components of the surface state near
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Figure 24. Bulk band projection at E = EF onto the different vicinal planes of figure 23. The
cigar-shaped rods represent the momentum distribution of the surface state in the z(z ′) direction
as deduced from figures 22 and 23. The increasing overlap of the Fourier spectrum with projected
bulk bands explains both the change in the dimensional character (1D versus 2D) and the switch
in the modulation plane (terrace versus average-surface).

the L-point overlap with bulk states4. That reduces the effective step potential, as discussed
previously, thereby allowing terrace-to-terrace coupling and surface band dispersion. The
complete overlap at different energies occurs at a closing gap between 7◦ and 9◦ miscuts, where
the smooth change in the modulation plane to average-surface-like for surface resonances is
observed.

7. Wavefunction mapping

In the QW regime at very low miscuts, it is possible to go beyond the analysis of the modulation
plane and the dispersing properties of the surface state. In such a case, the angle-resolved
photoemission intensity variation for each quantum level (IN ) contains enough information to
recover completely the respective QW wavefunction in real space. In figures 25(a) and 26(a)
data points correspond to the QW peak intensity obtained from fitting a line to the spectra

4 The angle α′
c at which the projection of the L-point falls outside the gap is (for E = EF) α′

c = tan−1(kneck/2kL) =
4.9◦.
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Figure 25. (a) Photoemission intensity of the two QW levels in Au(887) as a function of the
wavevector parallel to the terrace and perpendicular to the steps (see figure 10). The thin curves are
interpolation curves of the data points. The dashed curves represent the expected photoemission
intensity from the infinite QW of the same width. (b) Wavefunctions corresponding to the
photoemission intensities in (a) obtained by iterative oversampling (see text). The solid curves
correspond to the experimental wavefunctions, and their respective infinite QW wavefunctions are
represented with dashed curves.

of Au(887) and Au(23 23 21) shown in figures 10(b) and (c). For the horizontal axis we
have chosen qx′ , i.e. the photoelectron parallel momentum reduced to the first SBZ. As is
theoretically proved in [14], under the particular conditions of both experiments, IN (qx′) can
be assumed to be proportional to the probability density of the electron in the quantum well:

IN (qx′ ) ∝ |φ̃N (qx′)|2 = |〈qx′ |φN 〉|2 =
∣∣∣∣
∫

dx ′e−iqx ′ ·x′
φN (x ′)

∣∣∣∣
2

(12)

where φ̃N (qx′) is the Fourier transform of the wavefunction in real space φN (x ′). The natural
normalization of both the wavefunction and the measured intensity can be obtained from the
Fourier transform of the intensity IN (qx′), which can be considered as a self-convolution of
the real-space wavefunction [14]. After the normalization, the previous equation allows us to
obtain φN (x ′) from the intensity in reciprocal space as

φN (x ′) =
∫

dqx′

(2π)2
eiqx ′ ·x′√

IN (qx′ )eiδN (qx ′ ). (13)

This equation contains an unknown phase δN (qx′ ) that can be recovered by applying the
iterative procedure called oversampling, previously proposed for x-ray diffraction [54–56].
The oversampling consists of minimizing φ(x ′) far outside the region where the wavefunction
is confined. A confinement length L̃ is estimated directly from the self-convolution of
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Figure 26. (a) Photoemission intensity of the three quantum levels as a function of the wavevector
parallel to the terrace and perpendicular to the steps observed on Au(23 23 21) (see figure 10) and
(b) corresponding wavefunctions from iterative oversampling data in (a). As in figure 10, solid
curves correspond to the experimental wavefunctions, thin dotted curves are interpolation curves,
and dashed curves compare the results with the infinite QW of the same width.

φN (x ′) mentioned above, and obtained by Fourier transforming the photoemission intensity
IN (qx′ ). The iteration begins with a constant phase, e.g. δN (qx′) = 0, in equation (13). The
resulting φN (x ′) is smoothly cut away from the ‘oversampled’ area, in our case by making
φN = φN − 0.1 × φN−1 beyond 4L̃. The resulting φN (x ′) is transformed back into qx′ space
using equation (12), and the phase of φ̃N (qx′) is extracted and inserted again into equation (13)
to start a new cycle. Convergence is obtained after a few hundred iterations. The results for
the different quantum levels in Au(887) and Au(23 23 21) are shown in figures 25(b) and 26(b)
and compared with the case of the infinite QW of size L. The wavefunctions look very similar,
as expected from the comparison with probability functions in reciprocal space in figures 25(a)
and 26(a). All wavefunctions are confined to a region whose width matches the terrace width
L. Note that such terrace confinement has not been assumed by our reconstruction procedure,
but rather it has emerged from the information contained in the photoemission data.
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Figure 27. Experimental one-electron potentials averaged over the different QW levels observed
in photoemission for (a) Au(887) and (b) Au(23 23 21). The wavefunctions are plotted together at
their corresponding energy level. The step edges are represented by the coloured (vertical) walls.

From the experimental wavefunctions obtained in figures 25 and 26, we can retrieve the
effective one-electron potential of the terrace from the Schrödinger equation:

V (x ′) − EN = h̄2

2m∗φN (x ′)
∇2φN (x ′). (14)

From this equation we have obtained electron potentials which are basically the same for
all QW levels in each surface, further confirming the correct approach. In figure 27 we show
the electron potentials averaged over all QW levels. They exhibit a smooth central region
and sharp boundaries that force electron confinement. It must be stressed that the validity of
equation (14) is limited to regions where the wavefunction is not too small, and therefore the
asymptotic limit of the step potential barrier cannot be determined. The potential barrier in
both cases starts rising before the step edge is reached. For instance, the QW wavefunctions
find a potential value of V − E0 = 0.4 eV with respect to the reference level E0 at ∼ 5 Å and
∼3 Å before reaching the step for Au(887) and Au(23 23 21) respectively. These ‘onset’
values of the potential are qualitatively comparable with the ±2 Å estimated for the interaction
length of the potential at the step from jellium models [5, 42]. Furthermore, the narrowing of
the effective confinement length is consistent with the observations made by Otero et al [57]
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in Pb islands. They relate this narrower effective potential to the electron spillover at the well
boundaries.

One can use the experimental potentials to estimate the reference energy E0. This would
be given by the value of the potential in the flat region at the centre of the well. The reference
energies obtained this way are E0 = −0.509 and −0.486 eV for Au(887) and Au(23 23 21)
respectively, in agreement with the values obtained previously from the fit to the infinite QW
model.

8. Summary

Vicinal surfaces with regular arrays of steps might be viewed as model lateral nanostructures.
We have measured their electronic states in detail using angle-resolved photoemission with
synchrotron radiation. The latter has revealed itself as a powerful tool to study deeply electronic
properties. In fact, photoemission is shown to provide the complete Fourier spectrum that
allows a qualitative and quantitative probe of electron wavefunctions, either for 2D superlattice
states or for 1D confined electrons. In the later case, the real-space wavefunction is exactly
recovered from photoemission data using a phase-retrieval, iterative procedure borrowed from
x-ray diffraction. This encourages further work using more complex 2D arrays of 1D or
zero-dimensional nanostructures.
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